Spatial-temporal data mining procedure: LASR
نویسندگان
چکیده
This paper is concerned with the statistical development of our spatial-temporal data mining procedure, LASR (pronounced “laser”). LASR is the abbreviation for Longitudinal Analysis with Self-Registration of largep-small-n data. It was motivated by a study of “Neuromuscular Electrical Stimulation” experiments, where the data are noisy and heterogeneous, might not align from one session to another, and involve a large number of multiple comparisons. The three main components of LASR are: (1) data segmentation for separating heterogeneous data and for distinguishing outliers, (2) automatic approaches for spatial and temporal data registration, and (3) statistical smoothing mapping for identifying “activated” regions based on false-discovery-rate controlled p-maps and movies. Each of the components is of interest in its own right. As a statistical ensemble, the idea of LASR is applicable to other types of spatial-temporal data sets beyond those from the NMES experiments.
منابع مشابه
Spatio-Temporal Variation of Suspended Sediment Concentration at Downstream of a Sand Mine
The growing population led to greater human need to use natural resources such as sand and gravel mines. Direct removal of sands from the bed river leads to increase suspended sediment concentrations in downstream of harvested area and creates other problems viz. filling reservoirs, change in hydraulic characteristics of the channel and environmental damages. However, the range of temporal and ...
متن کاملUnderstanding Temporal Human Mobility Patterns in a City by Mobile Cellular Data Mining, Case Study: Tehran City
Recent studies have shown that urban complex behaviors like human mobility should be examined by newer and smarter methods. The ubiquitous use of mobile phones and other smart communication devices helps us use a bigger amount of data that can be browsed by the hours of the day, the days of the week, geographic area, meteorological conditions, and so on. In this article, mobile cellular data mi...
متن کاملSpatial-Temporal Data Representation in Ontology System for Personalized Decision Support
The increment of spatial-temporal data (STD) collected in many domain areas, including bioinformatics, engineering, medicine, environment, telecommunication, computer vision and many more has leads towards the emergent of information technology initiatives that facilitate the knowledge acquisition, organization and dissemination among research community. The initiatives include but not exhaust ...
متن کاملMining Association Rules in Geographical Spatio-temporal Data
For the sake of environmental change monitoring, a huge amount of geospatial and temporal data have been acquired through various networks of monitoring stations. For instance, daily precipitation and air temperature are observed at meteorological stations, and MODIS images are regularly received at satellite ground stations. However, so far these massive raw data from the stations are not full...
متن کاملA Spatio-Temporal Approach to Identify Variable Size/Shape Collocation
The goal of data mining is to discover nuggets. Spatial data mining discovers collocation rules. Especially in spatial data mining, when spatial data is relatively represented with time series, a spatio-temporal significance is inferred. In this context the collocation rule that is a quintessence for the spatial data, obtains changes to its size and shape with temporal influence. Thus, the chan...
متن کامل